开心六月综合激情婷婷|欧美精品成人动漫二区|国产中文字幕综合色|亚洲人在线成视频

    1. 
      
        <b id="zqfy3"><legend id="zqfy3"><fieldset id="zqfy3"></fieldset></legend></b>
          <ul id="zqfy3"></ul>
          <blockquote id="zqfy3"><strong id="zqfy3"><dfn id="zqfy3"></dfn></strong></blockquote>
          <blockquote id="zqfy3"><legend id="zqfy3"></legend></blockquote>
          打開APP
          userphoto
          未登錄

          開通VIP,暢享免費電子書等14項超值服

          開通VIP
          (2820)人工智能繼續(xù)迭代 類腦計算悄然走紅
          本報記者 劉園園
          深度學(xué)習(xí)正遍地開花,但它可能并非人工智能的終極方案。無論是學(xué)術(shù)界還是產(chǎn)業(yè)界,都在思考人工智能的下一步發(fā)展路徑:類腦計算已悄然成為備受關(guān)注的“種子選手”之一。
          12月16日至17日,由北京未來芯片技術(shù)高精尖創(chuàng)新中心及清華大學(xué)微電子學(xué)研究所聯(lián)合主辦的“北京高精尖論壇暨2019未來芯片論壇”在清華大學(xué)舉行,這次論壇上,類腦計算成為多位權(quán)威專家熱議的人工智能研究方向。
          人工智能浪潮下的洋流
          類腦計算又被稱為神經(jīng)形態(tài)計算(Neuromorphic Computing)。它不僅是學(xué)術(shù)會議關(guān)注的新熱點,產(chǎn)業(yè)界也在探索之中。
          11月中旬,英特爾官網(wǎng)宣布了一則消息:埃森哲、空中客車、通用電氣和日立公司加入英特爾神經(jīng)形態(tài)研究共同體(INRC),該共同體目前已擁有超過75個成員機構(gòu)。
          如果說,當(dāng)下人工智能發(fā)展浪潮正波濤洶涌的話,類腦計算就是浪潮之下的洋流。雖不太引人注意,未來卻有可能改變?nèi)斯ぶ悄馨l(fā)展趨勢。
          原因之一是,深度學(xué)習(xí)雖在語音識別、圖像識別、自然語言理解等領(lǐng)域取得很大突破,并被廣泛應(yīng)用,但它需要大量的算力支撐,功耗也很高。
          “我們希望智能駕駛汽車的駕駛水平像司機一樣,但現(xiàn)在顯然還達不到。因為它對信息的智能判斷和分析不夠,功耗也非常高?!鼻迦A大學(xué)微納電子系教授吳華強告訴科技日報記者,人工智能算法訓(xùn)練中心在執(zhí)行任務(wù)時動輒消耗電量幾萬瓦甚至幾十萬瓦,而人的大腦耗能卻僅相當(dāng)于20瓦左右。
          北京大學(xué)計算機科學(xué)技術(shù)系教授黃鐵軍也舉了一個生動的例子:市場上應(yīng)用深度學(xué)習(xí)技術(shù)的智能無人機已經(jīng)十分靈巧,但從智能程度上看,卻與一只蒼蠅或蜻蜓相差甚遠,盡管體積和功耗比后者高很多。
          追求模擬大腦的功能
          到底什么是類腦計算,它又憑什么贏得學(xué)術(shù)界和產(chǎn)業(yè)界的寵愛?
          “類腦計算從結(jié)構(gòu)上追求設(shè)計出像生物神經(jīng)網(wǎng)絡(luò)那樣的系統(tǒng),從功能上追求模擬大腦的功能,從性能上追求大幅度超越生物大腦,也稱神經(jīng)形態(tài)計算?!秉S鐵軍接受科技日報記者采訪時說。
          類腦計算試圖模擬生物神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)和信息加工過程。它在軟件層面的嘗試之一是脈沖神經(jīng)網(wǎng)絡(luò)(SNN)。
          現(xiàn)在深度學(xué)習(xí)一般通過卷積神經(jīng)網(wǎng)絡(luò)(CNN)或遞歸神經(jīng)網(wǎng)絡(luò)(RNN)來實現(xiàn)?!癈NN和RNN都屬于人工神經(jīng)網(wǎng)絡(luò),其中的人工神經(jīng)元,至今仍在使用上世紀40年代時的模型?!秉S鐵軍說,雖然現(xiàn)在設(shè)計出的人工神經(jīng)網(wǎng)絡(luò)越來越大,也越來越復(fù)雜,但從根本上講,其神經(jīng)元模型沒有太大改進。
          另一方面,在深度學(xué)習(xí)人工神經(jīng)網(wǎng)絡(luò)中,神經(jīng)元之間的連接被稱為權(quán)值。它們是人工神經(jīng)網(wǎng)絡(luò)的關(guān)鍵要素。
          而在脈沖神經(jīng)網(wǎng)絡(luò)中,神經(jīng)元之間卻是神經(jīng)脈沖,信息的表達和處理通過神經(jīng)脈沖發(fā)送來實現(xiàn)。就像我們的大腦中,有大量神經(jīng)脈沖在傳遞和流轉(zhuǎn)。
          黃鐵軍告訴記者,由于神經(jīng)脈沖在不停地傳遞和流轉(zhuǎn),脈沖神經(jīng)網(wǎng)絡(luò)在表達和處理信息時,比深度學(xué)習(xí)的時間性更突出,更加適合進行高效的時空信息處理。
          推廣應(yīng)用可能不需太久
          也有人從硬件層面去實現(xiàn)類腦計算,比如神經(jīng)形態(tài)芯片。
          2019年7月,英特爾發(fā)布消息稱,其神經(jīng)形態(tài)研究芯片Loihi執(zhí)行專用任務(wù)的速度可比普通CPU快1000倍,效率高10000倍。
          “在對信息的編碼、傳輸和處理方面,我們希望從大腦機制中獲得啟發(fā),將這些想法應(yīng)用到芯片技術(shù)上,讓芯片的處理速度更快、水平更高、功耗更低?!眳侨A強也在進行神經(jīng)形態(tài)芯片相關(guān)研究,他告訴科技日報記者。
          吳華強介紹,在傳統(tǒng)的馮·諾依曼架構(gòu)中,信息的處理和存儲是分開的,而人的大腦在處理信息時,存儲和處理是融為一體的。
          “所以我們在嘗試研發(fā)存算一體化的芯片,希望通過避免芯片內(nèi)部不停地搬運數(shù)據(jù),來大幅提高芯片的能效比?!眳侨A強說,他的團隊現(xiàn)在也已研發(fā)出存算一體的樣品芯片。
          談到類腦計算的進展,黃鐵軍告訴記者,目前類腦計算仍在摸索階段,還缺乏典型的成功應(yīng)用。但商業(yè)公司已經(jīng)嗅到味道,相關(guān)技術(shù)獲得規(guī)模性應(yīng)用可能不需要太長時間。
          “現(xiàn)在的神經(jīng)形態(tài)計算還比較初步,它的發(fā)展水平跟現(xiàn)有主流人工智能算法相比,還存在一定差距?!敝锌圃鹤詣踊芯繂T張兆翔接受科技日報記者采訪時認為,但作為一種新的探索方式,應(yīng)該繼續(xù)堅持,因為它可能就是未來人工智能技術(shù)發(fā)展的重要突破口。
          (《科技日報》2019年12月20日第 3 版。)
          本站僅提供存儲服務(wù),所有內(nèi)容均由用戶發(fā)布,如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請點擊舉報。
          打開APP,閱讀全文并永久保存 查看更多類似文章
          猜你喜歡
          類似文章
          黃鐵軍:電子大腦漸行漸近 人類即將被機器超越
          重磅!我國科學(xué)家成功研制全球神經(jīng)元規(guī)模最大的類腦計算機
          人工智能時代,我們需要什么樣的芯片?| 碼書
          類腦計算芯片技術(shù)發(fā)展及軍事應(yīng)用淺析
          “拯救”受損大腦,時識科技用類腦芯片構(gòu)建下一代腦機接口
          第一屆“(2017)世界智能大會”在天津舉辦
          更多類似文章 >>
          生活服務(wù)
          分享 收藏 導(dǎo)長圖 關(guān)注 下載文章
          綁定賬號成功
          后續(xù)可登錄賬號暢享VIP特權(quán)!
          如果VIP功能使用有故障,
          可點擊這里聯(lián)系客服!

          聯(lián)系客服