【讀音】yī cì hán shù 【解釋】函數的基本概念:一般地,在某一變化過程中,有兩個變量x和y,如果給定一個X值,相應地就確定了唯一
一個Y值與X對應,那么我們稱Y是X的函數(function).其中X是自變量,Y是因變量,也就是說Y是X的函數。當x=a時,函數的值叫做當x=a時的函數值。 定義與定義式
自變量x和
因變量y有如下關系:
y=kx (k為任意不為零實數)
或y=kx+b (k為任意不為零實數,b為任意實數)
則此時稱y是x的一次
函數。
特別的,當b=0時,y是x的
正比例函數。正比例是Y=kx+b。
即:y=kx (k為任意不為零實數)
定義域:自變量的取值范圍,自變量的取值應使函數有意義;要與實際相符合。
一次函數的性質
1.y的變化值與對應的x的變化值成正比例,比值為k
即:y=kx+b(k≠0) (k不等于0,且k,b為常數)
2.當x=0時,b為函數在y軸上的
截距。
3.k為一次函數y=kx+b的斜率,k=tg角1(角1為一次函數圖象與x軸正方向夾角)
形。取。象。交。減
4.正比例函數也是一次函數.
5.函數圖像性質:當k相同,且b不相等,圖像平行;當k不同,且b相等,圖像相交;當k,b都相同時,兩條線段重合。
一次函數的圖像及性質
1.作法與圖形:通過如下3個步驟
(1)列表[一般取兩個點,根據兩點確定一條直線];
?。?)描點;
?。?)連線,可以作出一次函數的圖像——一條
直線。因此,
作一次函數的圖像只需知道2點,并連成直線即可。(通常找函數圖像與x軸和y軸的交點)
2.性質:(1)在一次函數上的任意一點P(x,y),都滿足等式:y=kx+b(k≠0)。(2)一次函數與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)
正比例函數的圖像都是過原點。
3.函數不是數,它是指某一變量過程中兩個變量之間的關系。
4.k,b與函數圖像所在
象限:
y=kx時(即b等于0,y與x成正比)
當k>0時,直線必通過一、三象限,y隨x的增大而增大;
當k<0時,直線必通過二、四象限,y隨x的增大而減小。
y=kx+b時:
當 k>0,b>0, 這時此函數的圖象經過一,二,三象限。
當 k>0,b<0, 這時此函數的圖象經過一,三,四象限。
當 k<0,b>0, 這時此函數的圖象經過一,二,四象限。
當 k<0,b<0, 這時此函數的圖象經過二,三,四象限。
當b>0時,直線必通過一、二象限;
當b<0時,直線必通過三、四象限。
特別地,當b=0時,直線通過原點O(0,0)表示的是正比例函數的圖像。
這時,當k>0時,直線只通過一、三象限,不會通過二、四象限。當k<0時,直線只通過二、四象限,不會通過一、三象限。
4、特殊位置關系
當平面直角坐標系中兩直線平行時,其函數解析式中K值(即一次項系數)相等
當平面直角坐標系中兩直線垂直時,其函數解析式中K值互為負倒數(即兩個K值的乘積為-1)
確定一次函數的表達式
已知點A(x1,y1);B(x2,y2),請確定過點A、B的一次函數的
表達式。
(1)設一次函數的表達式(也叫解析式)為y=kx+b。
(2)因為在一次函數上的任意一點P(x,y),都滿足等式y(tǒng)=kx+b。所以可以列出2個方程:y1=kx1+b …… ① 和 y2=kx2+b …… ②
?。?)解這個二元一次方程,得到k,b的值。
(4)最后得到一次函數的表達式。
一次函數在生活中的應用
1.當時間t一定,距離s是速度v的一次函數。s=vt。
2.當水池抽水速度f一定,水池中水量g是抽水時間t的一次函數。設水池中原有水量S。g=S-ft。
1.求函數圖像的k值:(y1-y2)/(x1-x2)
2.求與x軸平行線段的中點:|x1-x2|/2
3.求與y軸平行線段的中點:|y1-y2|/2
4.求任意線段的長:√(x1-x2)^2+(y1-y2)^2 (注:根號下(x1-x2)與(y1-y2)的平方和)
5.求個兩一次函數式圖像交點坐標:解兩函數式
兩個一次函數 y1=k1x+b1 y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 將解得的x=x0值代回y1=k1x+b1 y2=k2x+b2 兩式任一式 得到y(tǒng)=y0 則(x0,y0)即為 y1=k1x+b1 與 y2=k2x+b2 交點坐標
6.求任意2點所連線段的中點坐標:[(x1+x2)/2,(y1+y2)/2]
7.求任意2點的連線的一次函數解析式:(X-x1)/(x1-x2)=(Y-y1)/(y1-y2) (其中分母為0,則分子為0)
k b
+ + 在一象限
+ - 在四象限
- + 在二象限
- - 在三象限
8.若兩條直線y1=k1x+b1∥y2=k2x+b2,那么k1=k2,b1≠b2
9.如兩條直線y1=k1x+b1⊥y2=k2x+b2,那么k1×k2=-1
10.左移X則B+X,右移X則B-X
11.上移Y則X項+Y,下移Y則X項-Y
(有個規(guī)律.b項的值等于k乘于上移的單位在減去原來的b項。)
?。ù颂幉蝗?愿有人補充)
上移:(a為移動的數量)Y=k(X+a)+b
Y=kX+ak+b
下移:(a為移動的數量)Y=k(X-a)+b
Y=kX-ak+b
一次函數y=kx+b的性質是:(1)當k>0時,y隨x的增大而增大;(2)當k<0時,y隨x的增大而減小。利用一次函數的性質可解決下列問題。
一、確定字母系數的取值范圍
例1. 已知正比例函數 ,則當k<0時,y隨x的增大而減小。
解:根據正比例函數的定義和性質,得 且m<0,即 且 ,所以 。
二、比較x值或y值的大小
例2. 已知點P1(x1,y1)、P2(x2,y2)是一次函數y=3x+4的圖象上的兩個點,且y1>y2,則x1與x2的大小關系是( )
A. x1>x2 B. x1<x2 C. x1=x2 D.無法確定
解:根據題意,知k=3>0,且y1>y2。根據一次函數的性質“當k>0時,y隨x的增大而增大”,得x1>x2。故選A。
三、判斷函數圖象的位置
例3. 一次函數y=kx+b滿足kb>0,且y隨x的增大而減小,則此函數的圖象不經過( )
A. 第一象限 B. 第二象限
C. 第三象限 D. 第四象限
解:由kb>0,知k、b同號。因為y隨x的增大而減小,所以k<0。所以b<0。故一次函數y=kx+b的圖象經過第二、三、四象限,不經過第一象限。故選A . 典型例題:
例1. 一個彈簧,不掛物體時長12cm,掛上物體后會伸長,伸長的長度與所掛物體的質量成正比例.如果掛上3kg物體后,彈簧總長是13.5cm,求彈簧總長是y(cm)與所掛物體質量x(kg)之間的函數關系式.如果彈簧最大總長為23cm,求自變量x的取值范圍.
分析:此題由物理的定性問題轉化為數學的定量問題,同時也是實際問題,其核心是彈簧的總長是空載長度與負載后伸長的長度之和,而自變量的取值范圍則可由最大總長→最大伸長→最大質量及實際的思路來處理.
解:由題意設所求函數為y=kx+12
則13.5=3k+12,得k=0.5
∴所求函數解析式為y=0.5x+12
由23=0.5x+12得:x=22
∴自變量x的取值范圍是0≤x≤22
例2
某學校需刻錄一些電腦光盤,若到電腦公司刻錄,每張需8元,若學校自刻,除租用刻錄機120元外,每張還需成本4元,問這些光盤是到電腦公司刻錄,還是學校自己刻費用較省?
此題要考慮X的范圍
解:設總費用為Y元,刻錄X張
電腦公司:Y1=8X
學校 :Y2=4X+120
當X=30時,Y1=Y2
當X>30時,Y1>Y2
當X<30時,Y1<Y2
【考點指要】
一次函數的定義、圖象和性質在中考說明中是C級知識點,特別是根據問題中的條件求函數解析式和用待定系數法求函數解析式在中考說明中是D級知識點.它常與反比例函數、二次函數及方程、方程組、不等式綜合在一起,以選擇題、填空題、解答題等題型出現在中考題中,大約占有8分左右.解決這類問題常用到分類討論、數形結合、方程和轉化等數學思想方法.
例2.如果一次函數y=kx+b中x的取值范圍是-2≤x≤6,相應的函數值的范圍是-11≤y≤9.求此函數的的解析式。
解:(1)若k>0,則可以列方程組 -2k+b=-11
6k+b=9
解得k=2.5 b=-6 ,則此時的函數關系式為y=2.5x—6
(2)若k<0,則可以列方程組 -2k+b=9
6k+b=-11
解得k=-2.5 b=4,則此時的函數解析式為y=-2.5x+4
【考點指要】
此題主要考察了學生對函數性質的理解,若k>0,則y隨x的增大而增大;若k<0,則y隨x的增大而減小。
一次函數解析式的幾種類型 ?、賏x+by+c=0[一般式]
?、趛=kx+b[斜截式]
?。╧為直線斜率,b為直線縱截距,正比例函數b=0)
③y-y1=k(x-x1)[點斜式]
?。╧為直線斜率,(x1,y1)為該直線所過的一個點)
④(y-y1)/(y2-y1)=(x-x1)/(x2-x1)[兩點式]
?。ǎ▁1,y1)與(x2,y2)為直線上的兩點)
⑤x/a-y/b=0[截距式]
?。╝、b分別為直線在x、y軸上的截距)
解析式表達局限性:
?、偎钘l件較多(3個);
?、?、③不能表達沒有斜率的直線(平行于x軸的直線);
?、軈递^多,計算過于煩瑣;
?、莶荒鼙磉_平行于坐標軸的直線和過圓點的直線。
傾斜角:x軸到直線的角(直線與x軸正方向所成的角)稱為直線的傾斜 角。設一直線的傾斜角為a,則該直線的斜率k=tg(a)